CHAPTER 7

Dynamic Replication Methods
and Synthetics

Introduction

The previous chapters have dealt vataticreplication of cash flows. The synthetic constructions
we discussed were static in the sense that the replicating portfolio did not neadjasyments

until the target instrument matured or expired. As time passed, the fair value of the synthetic
and the value of the target instrument moved in an identical fashion.

However, static replication is not always possible in financial engineering, and replicating
portfolios may need constant adjustment (rebalancing) to maintain their equivalence with the
targeted instrument. This is the case for many different reasons. First of all, the implementation
of static replication methods depends on the existence of other assets that permit the use of what
we calledcontractual equationsTo replicate the targeted security, we need a minimum num-
ber of “right-hand-side” instruments in the contractual equation. If markets in the component
instruments do not exist, contractual equations cannot be used directly and the synthetics cannot
be created this way.

Second, the instruments themselves may exist, but they may hagtlak If the components
of a theoretical synthetic do not trade actively, the synthetic may not really replicate the original
asset satisfactorily, even though sensitivity factors with respect to the underlying risk factors are
the same. For example, if constituent assets are illiquid, the price of the original asset cannot
be obtained by “adding” the prices of the instruments that constitute the synthetic. These prices
cannot be readily obtained from markets. Replication and marking-to-market can only be done
using assets that are liquid and “similar” mdt identical to the components of the synthetic.
Such replicating portfolios may need periodic adjustments.

Third, the asset to be replicated can be higidplinear Using linear instruments to replicate
nonlinear assets will involve various approximations. At a minimum, the replicating portfolios
need to be rebalanced periodically. This would be the case with assets containing optionality.
As the next two chapters will show, options are convex instruments, and their replication
requires dynamic hedging and constant rebalancing.

Finally, the parameters that play a role in the valuation of an asset may change, and this may
require rebalancing of the replicating portfolio.
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In this chapter, we will see that creating syntheticglipgamicreplication methods follows

the same general principles as those used in static replication, except for the need to rebalance
periodically. In this sense, dynamic replication may be regarded as merely a generalization
of the static replication methods discussed earlier. In fact, we could have started the book with
principles of dynamic replication and then shown that, under some special conditions, we would
end up with static replication. Yet, most “bread-and-butter” market techniques are based on the
static replication of basic instruments. Static replication is easier to understand, since it is less
complex. Hence, we dealt with static replication methods first. This chapter extends them now
to dynamic replication.

An Example

Dynamic replication is traditionally discussed within a theoretical framework. It works “exactly”
only in continuous time, where continuous, infinitesimal rebalancing of the replicating portfolio

is possible. This exactness in replication may quickly disappear with transaction costs, jumps
in asset prices, and other complications. In discrete time, dynamic replication can be regarded
as an approximation. Yet, even when it does not lead to the exact replication of assets, dynamic
replication is an essential tool for the financial engineer.

In spite of the many practical problems, discrete tidy@amic hedgindgorms the basis of
pricing and hedging of many important instruments in practice. The following reading shows
how dynamic replication methods are spreading to areas quite far from their original use in
financial engineering—namely, for pricing and hedging plain vanilla options.

EXAMPLE:

A San Francisco—based institutional asset manager is selling an investment strategy that
uses synthetic bond options to supply a guaranteed minimum return to investars.

Though not a new concept—option replication has been around since the late 1980s
the bond optionreplication portfolio. . replicates call options in thatit allows investors
to participate in unlimited upside while not participating in the downside.

The replicating portfolio mimics the price behaviour of the option every day until expi-
ration. Each day the model provides a hedge ratio or delta, which shows how much the
option price will change as the underlying asset changes.

“They are definitely taking a dealer’s approach, rather than an asset manager’s approach
in that they are not buying options from the Street; they are creating them themselves,
[a dealer] said. (IFR, February 28, 1998).

This reading illustratesneuse of dynamic replication methods. It shows that market partici-
pants may replicate nonlinear assets in a cheaper way than buying the same security from the
dealers. In the example, dynamic replication is combined puitiicipal preservatiorto obtain
a product that investors may find more attractive. Hence, dynamic replication is used to create
synthetic options that are more expensive in the marketplace.

A Review of Static Replication

The following briefly reviews the steps taken in static replication.

1. First, we write down the cash flows generated by the asset to be replicated. Figure 7-1
repeats the example of replicating a deposit. The figure represents the cash flows of a
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Buy 100 USD forward against currency X +100USD
t T
—100 f; units
of X

Using B(t, T) units of USD, buy X currency...

+X
t )} ) T
-B(t,T)
Deposit the X... Receive currency X
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T
-X

Under no-arbitrage condition we obtain a 1-year deposit

+100USD

—-B(t, T)

FIGURE 7-1

T-maturity Eurodeposit The instrument involves two cash flows at two different times,
t andT', in a given currency, U.S. dollars (USD).

2. Next, we decompose these cash flows in order to recreate some (liquid) assets such that
a vertical addition of the new cash flows match those of the targeted asset. This is shown
in the top part of Figure 7-1. A forward currency contract written against a curr&ncy
a foreign deposit in currency, and a spot FX operation have cash flows that duplicate
the cash flows of the Eurodeposit when added vertically.

3. Finally, we have to make sure that the (credit) risks of the targeted asset and the proposed
synthetic are indeed the same. The constituents of the synthetic asset form what we call
thereplicating portfolia

We have seen several examples for creating such synthetic assets. It is useful to summarize two
important characteristics of these synthetics.

First of all, a synthetic is created at timdy taking positions on threetherinstruments.
But, and this is the point that we would like to emphasize, once these positions are taken we
neveragain have to modify or readjust thaantityof the instruments purchased or sold until the
expiration of the targeted instrument. This is in spite of the fact that market risks would certainly
change during the intervél, T'). The decision concerning the weights of the replicating portfolio
is made at time, and it is kept until timél". As a result, the synthetic does not require further
cash injection®r cash withdrawalsand it matches all the cash flows generated by the original
instrument.

Second, the goal is to match the expiration cash flows of the target instrument. Because the
replication does not require any cash injections or withdrawals during the in{ér73| the
timet value of the target instrument will then match the value of the synthetic.
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The Framework

Let us show how nonexistence or illiquidity of markets and the convexity of some instruments
change the methodology of static synthetic asset creation. We first need to illustrate the difficul-
ties of using static methods under these circumstances. Second, we need to rdgtiaate
synthetic asset creation.

The treatment will naturally be more technical than the simple approach adopted prior to this
chapter. It is clear that as soon as we move into the realm of portfolio rebalancing and dynamic
replication, we will need a more analytical underlying framework. In particular, we need to be
more careful about the timing of adjustments, and especially how they can bennitlaoletany
cash injections or withdrawals.

We adopt a simple environment of dynamic synthetic asset creation using a basic example—
we use discount bonds and assume that risk-free borrowing and lending is the only other asset
that exists. We assume that there are no markets in FX, interest rate forwards, and Eurodeposit
accounts beyond the very short maturity. We will try to create synthetics for discount bonds in
this simple environment. Later in the chapter, we move into equity instruments and options and
show how the same techniques can be implemented there.

We consider a sequence of intervals of lengjth

o< - - <ti<---<T (1)
with
tig1 —t; =20 2)

Suppose the market practitioner faces amy liquid markets. The first is the market for one-
period lending/borrowing, denoted by the symbBil* The B; is the timet value of $1 invested
at timet,. Growing at the annual floating interest rdtge with tenord, the value ofB, at time
t, can be expressed as

By, = (14 Ly, 0)(1+ Ly, d). . .(1+ Ly, _,0) 3)

The second liquid market is for a default-free pure discount bond whosée famee is denoted
by B(t,T). The bond pays 100 at tinfeand sells for the pric& (¢, T') at timet. The practitioner
can use only these two liquid instrumert8,;, B(t, T') }, to construct synthetics. No other liquid
instrument is available for this purpose.

It is clear that these are not very realistic assumptions except maybe for some emerging
markets where there is a liquid overnight borrowing-lending facility and one other liquid, on-
the-run discountbond. In mature markets, notonly is there a whole set of maturities for borrowing
and lending and for the discount bond, but rich interest rate and FX derivative markets also exist.
These facilitate the construction of complex synthetics as seen in earlier chapters. However, for
discussing dynamic synthetic asset creation, the simple framework selected here will be very
useful. Once the methodology is understood, it will be straightforward to add new markets and
instruments to the picture.

Synthetics with a Missing Asset

Consider a practitioner operating in the environment just described. Suppose this practitioner
would like tobuy, at timet,, a two-period default-free pure discount bond denote&ty;, T5)
with maturity datels = ¢,. It turns out that the only bond that is liquid idtaree-periodoond

1 Some texts call this instrumensavings account
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with price B(to, T5) and maturityTs = t3. The B(ty, T») either does not exist or is illiquid.
Its current fair price is unknown. So the market practitioner decides to creatB(theTs)
synthetically.

One immediate consideration is thastatic replication wouldnot work in this setting. To
see this, consider Figures 7-2 and 7-3. Figure 7-2 shows the cash flow diagrams fbe
one-period borrowing/lending, combined with the cash flows of a two-period bond. The top
portion of the figure shows tha (¢, 7%) is paid at timel, to buy the bond that yields00 at
maturity 7. These simple cash flows cannot, unfortunately, be reconstructed using one-period
borrowing/lendingB; only, as can be seen in the second part of Figure 7-2. The two-period
bond consists of two known cash flows at tiniggndT5. It is impossible to duplicategt time
to, the cash flow of 100 & using B;, withoutmaking any cash injections and withdrawals,
as the next section will show.

3.2.1. A Synthetic That Uses B; Only

Suppose we adopt a rollover strategy: (1) lend money at tijnfer one period, at the known
rate L, (2) collect the proceeds from this@t and (3) lend it again at timg at a rateL,, ,
so as to achieve a net cash inflowl0b at timet,. There aréwo problems with this approach.

+100
A-two period bond with par value 100
~—
) L0} 1)
—B(ty, )
Known
VS.
unknown
cash flow
1-period deposit
?
Rate = L, Rate L, =7? r——=
0 1 | :
—_—
o
I
- )
ty I / t
I
—B(ty, ) .
Deposit B(ty, t,) then roll over
+100
If a forward existed. ..
fo i 1)
_ 100 (f; known at t)
1+ £, 9) 0
0

FIGURE 7-2
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+100

A-three period bond

FIGURE 7-3

First, the ratel;, is not knownat timet,, and hence we cannot decidet@thow much to lend
in order to duplicate the time, cash flow. The amount

100
(14 Ly, 0) (14 Ly, 6)

that needs to be invested to recover the U@Dneeded at timé, is not known. This is in spite
of the fact thatl,, is known.

Of course, we could guess how much to invest and then make any necessary additional cash
injections into the portfolio when timg comes: We can inveds,, at¢, and then oncé,,, is
observed at;, we add or subtract an amoufdtB of cashto make sure that

(4)

[By, (14 L,6) + AB] (1 + Ly,8) = 100 (5)

But, and this is the second problem, this strategy requnestionsor withdrawals A B of
an unknown amount af . This makes our strategy useless for hedging, as the portfolio is not
self-financing and the need for additional funds is not eliminated.

Pricing will be imperfect with this method. Potential injections or withdrawals of cash
imply that thetrue cost of the synthetic at timig is not known? Hence, the one-period borrow-
ing/lending cannot be used by itself to obtain a static syntheti&fog, 7%). As of timet,, the
creation of the synthetic is not complete, and we need to make an additional decisiontat date
to make sure that the underlying cash flows match those of the targeted instrument.

3.2.2. Synthetics That Use B; and B(t, T3)

Bringing in the liquid longer-term bonB (¢, T3 ) will not help in the creation of ataticsynthetic
either. Figure 7-4 shows that no matter what we do at timthe three-period bond will have an
extraand nonrandom cash flow of $100 at maturity d&teThis cash flow, being “extra” (an
exact duplication of the cash flows generatediiy, T») as of timet,), is not realized.

Up to this point, we did not mention the use of interest rate forward contracts. It is clear
that a straightforward synthetic f@ (¢, 7>) could be created if a market for forward loans or
forward rate agreements (FRASs) existed along with the “long” bB(d, 7). In our particular
case, & x 3 FRAwould be convenient as shown in Figure 7-4. The synthetic consists of buying
(1+ fi,9) units of theB(ty, T3) and, at the same time, taking out a one-period forward loan at
the forward ratef;,. This way, we would successfully recreate the two-period bondsiaisc
setting. But this approach assumes that the forward markets exist and that they are liquid. If
these markets do not exist, dynamic replication is our only recourse.

2 If there are injections, we cannot use the synthetic for pricing because the cost of the synthetic is not only what
we pay at time. We may end up paying more or less than this amount. This means that the true cost of the strategy is
not known at timetg.
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Two-period bond
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FIGURE 7-4

“Ad Hoc” Synthetics

Then how can we replicate the two-period bond? There are several answers to this question,
depending on the level of accuracy afinancial engineer expects from the “synthetic.” An accurate
synthetic requires dynamic replication which will be discussed later in this chapter. But, there
are also less accurate, ad hoc, solutions. As an example, we consider a simple, yet quite popular
way of creating synthetic instruments in the fixed-income sector, referred toiagthumization
strategy.

In this section we will temporarily deviate from the notation used in the previous section
and let, for simplicity,0 = 1; so that thet; represents years. We assume that there are three
instruments. They depend on teamerisk factors, yet they have differesensitivitiesdue to
strong nonlinearities in their respective valuation formulas. We adopt a slightly more abstract
framework compared to the previous section and let the three dste1ss;, Ss: } be defined
by the pricing functions:

S1y = f(fft) (6)
Sar = g(xt) (7)
Szt = h(w:) 8)



184

4.1.

CHAPTER 7+ Dynamic Replication Methods and Synthetics

where the function&(.), f(.), andg(.) are nonlinear. The;, is the common risk factor to all
prices. TheS;,; will play the role of targeted instrument, and the,;, Ss;: } will be used to form
the synthetic.

We again begin witlstaticstrategies. It is clear that as the sensitivities are different, a static
methodology such as the one used in Chapters 3 through 6 cannot be implemented. As time
passesg; will change randomly, and the responsesyf,: = 1,2, 3, to changes in;; will be
different. However, one ad hoc way of creating a syntheticSforby usingSs; andSs; is the
following.

At time ¢ we form a portfolio with a value equal 18, and with weight®? andd? such that
the sensitivities of the portfolio

0%S9; + 03Ss, )

with respect to the risk factar; are as close as possible to the corresponding sensitivities of
S1:- Using the first-order sensitivities, we obtain two equations in two unknof#isg? }:

S1 = 9252 + 9353 (10)
051 _ ) 1105
or o Ox +0 ox (11)

Astrategy using such a system may have some important shortcomings. It will in general require
cash injections or withdrawals over time, and this violates one of the requirements of a synthetic
instrument. Yet, under some circumstances, it may provide a practical solution to problems faced
by the financial engineer. The following section presents an example.

Immunization

Suppose that, at timky, a bank is considering the purchase of the previously mentioned two-
period discount bond at a prié&(ty, T»), T> = to + 2. The bank can fund this transaction either
by using 6-month floating funds or by selling short a three-period discount Bing 75),

T3 = to + 3 or a combination of both. How should the bank proceed?

The issue is similar to the one that we pursued earlier in this chapter—namely, how to
construct a synthetic faB (¢, 7»). The best way of doing this is, of course, to determine an
exact synthetic that is liquid and least expensive—using the 6-month funds and the three-period
bond—and then, if a hedge is desirad|l the synthetic. This will also provide the necessary
funds for buyingB(to, 7). The result will be a fully hedged position where the bank realizes
the bid-ask spread. We will learn later in the chapter how to implement this “exact” approach
using dynamic strategies.

An approximate way of proceeding is toatch the sensitivitieas described earlier. In
particular, we would try to match thiérst-order sensitivities of the targeted instrument. The
following strategy is an example for th@munizatiorof a fixed-income portfolio. In order to
work with a simple risk factor, we assume that the yield curve displays parallel shifts only. This
assumption rarely holds, but it is still used quite frequently by some market participants as a
first-order approximation. In our case, we use it to simplify the exposition.

EXAMPLE:

Suppose the zero-coupon yield curve is flag at 8% and that the shifts are parallel.
Then, the values of the 2-year, 3-year and 6-month bonds in terms of the corresponding
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yield y will be given by

100

B(thT2> = m = 85.73 (12)
100

B(to,T3) = m =179.38 (13)
100

B(to, T:5) = T g)05 = %623 (14)

Using the “long” bond B(tg, T3) and the “short” B(to, T'5), we need to form a port-
folio with initial cost 85.73. This will equal the timig-value of the target instrument,
B(to, T»). We also want the sensitivities of this portfolio with respegttobe the same
as the sensitivity of the original instrument. We therefore need to solve the equations

0' B(to, T3) + 6*B(to, T'5) = 85.73 (15)
o! 0B(to, Ts) np 0B(ty,T'5) _ 0B(tg, Tz) (16)
dy oy oy
We can calculate the “current” values of the partials:
OB(ty,T5) —50
= = —44.55 17
Ay 14yt 4o
B T
0B(to,To) _ 158 77 (18)
oy
9Bt 1) _ 99051 (19)
oy
Replacing these in equations (15) and (16) we get
0'79.38 + 6%96.23 = 85.73 (20)
0'(220.51) + 62 (44.55) = 158.77 (21)
Solving
6 = 0.65,60° = 0.36 (22)

Hence, we need to short 0.65 units of the 6-month bond and short 0.36 units of the
3-year bond to create an approximate synthetic that will fund the 2-year bond. This
will generate the needed cash and has the same first-order sensitivities with respect to
changes iry at timet. This is a simple example of immunizing a fixed-income portfolio.

According to this, the asset being held(ty, T5), is “funded” by a portfolio of other
assets, in a way to make the response of the total position insensitive to first-order
changes iny. In this sense, the position is “immunized.”

The preceding example shows an approximate way of obtaining “synthetics” using dynamic
methods. In our case, portfolio weights were selected so that the response to a small change in
the yield,dy, was the same. But, note the following important point.

e The second and higher-order sensitivities were not matched. Thus, the funding portfolio
was not really an exact synthetic for the original baB(k, 7%). In fact, the second
partials of the “synthetic” and the target instrument would respond differentdy to
Therefore, the portfolio weight®, i = 1,2 need to be recalculated as time passes and
new values of; are observed.
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It is important to realize in what sense(s) the method is approximate. Even though we can
adjust the weighté’ as time passes, these adjustments would normedjyire cash injections
or withdrawals.This means that the portfolio is not self-financing.

In addition, the shifts in the yield curve are rarely parallel, and the yields for the three
instruments may change by different amounts, destroying the equivalence of the first-order
sensitivities as well.

Principles of Dynamic Replication

We now go back to the issue of creating a satisfactory synthetic for a “short” Botd 7%)
using the savings accoum; and a “long” bondB(ty, T3). The best strategy for constructing
a synthetic forB(t, T>) consists of a “clever” position taken i8; and B(t¢, T3) such that, at
time ¢y, the extra casgeneratedy the B, adjustment is sufficient for adjusting ti#(t,, 75).

In other words, we give usgtaticreplication, and we decide to adjust the timgsositions at
timet, in order to match the tim&; cash payoff of the two-period bonHowever we adjust
the positions in a way thato net cash injections or withdrawals take pla@éhatever cash is
needed at time; for the adjustment of one instrument will be provided by the adjustment of
the otherinstrument. If this is done while at the same time it is ensured that theZEinvedue
of this adjusted portfolio i$00, replication will be complete. It will not be static; it will require
adjustments, but, importantly, weouldknow, at timet,, how much cash to put down in order
to receive $100 .

Such a strategy works because bBth and B(ty, T3) depend on the sanlg,, , the interest
rate that is unknown at tim&, and both have known valuation formulas. By cleverly taking
offsetting positions in the two assets, we may be able to eliminate the effects of the unknown
L, as of timet,.

The strategy will combine imperfect instruments that are correlated with each other to get a
synthetic attime,. However, this synthetic will need constant rebalancing due to the dependence
of the portfolio weights on random variables unknown as of tigeYet, if these random
variables were correlated in a certain fashion, these correlations can begasest each other
to eliminate the need for cash injections or withdrawals. The cost of forming the portfejljo at
would then equal the arbitrage-free value of the original asset.

What are the generglinciplesof dynamic replication according to the discussion thus far?

1. We need to make sure that during the life of the security there are no dividends or other
payouts. The replicating portfolio must match fivaal cash flows exactly.

2. During the replication process, there should be no net cash injections or withdrawals. The
cash deposited at the initial period should equalitbe costof the strategy.

3. The credit risks of the proposed synthetic and the target instrument should be the same.

As long as these principles are satisfied, any replicating portfolio whose weights change
during[t, T] can be used as a synthetic of the original asset. In the rest of the chapter we apply
these principles to a particular setting and learn the mechanics of dynamic replication.

Dynamic Replication of Options

For replicating options, we use the same logic as in the case of the two-period bond discussed
in the previous section. We will explore options in the next chapter. However, for completeness
we repeat a brief definition. A European call option entitles the holder to buy an underlying
asset,S;, at a strike pricel, at an expiration daté'. Thus, at timel’, ¢ < T, the call option

payoff is given by the broken line shown in Figure 7-5. If price at tifhis lower thank, there
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FIGURE 7-5

is no payoff. If S exceed<s, the option is worth(Sr — K). The value of the optiobefore
expiration involves an additional component called tinge valueand is given by the curve
shown in Figure 7-5.

Let the underlying asset be a stock whose pricg, isThen, when the stock price rises, the
option price also rises, everything else being the same. Hence the stock isdugklgtedwith
the option.

This means that we can form at tiiga porfolio usingB;, andsS;, such that as time passes,
the gains from adjusting one asset compensate the losses from adjusting the other. Constant
rebalancing can be done without cash injections and withdrawals, and the final value of the
portfolio would equal the expiration value of the option. If this can be done with reasonably
close approximation, the cost of forming the portfolio would equal the arbitrage-free value of
the option. We will discuss this case in full detail later in this chapter, and will see an example
when interest rates are assumed to be constant.

Dynamic Replication in Discrete Time

In practice, dynamic replication cannot be implemented in continuous time. We do need some
time to adjust the portfolio weights, and this implies that dynamic strategies need to be analyzed
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in discrete time. We prefer to start with bonds again, and then move to options. Suppose we want
to replicate the two-period default-free discount bd®d,, T), T> = to, usingBy, B(tg, T3)

with Ty < T3, similar to the special case discussed earlier. How do we go about doing this in
practice?

5.2.1. The Method

The replication period i, T»], and rebalancing is done in discrete intervals during this period.
First, we select an interval of lengtk, and divide the perioft,, 7] into n such finite intervals:

nA = T2 - to (23)

Ateacht;, = t;_1 + A, we select new portfolio weights, such that

1. At Ts, the dynamically created synthetic has exactly the same value §%-timaturity
bond.

2. Ateach step, the adjustment of the replicating portfolio requires no net cash injections or
withdrawals.

To implement such a replication strategy, we need to deviate from static replication methods
and make someewassumptions. In particular, we just saw that correlations between the under-
lying assets play a crucial role in dynamic replication. Hence, we neaddelfor the way

By, B(t,Tz), andB(t, T5) movejointly over time.

This is a delicate process, and there are at least three approaches that can be used to model
these dynamics: (1) binomial-tree or trinomial-tree methods; (2) partial differential equation
(PDE) methods, which are similar to trinomial-tree models but are more general; and (3) direct
modeling of the risk factors using stochastic differential equations and Monte Carlo simulation.

In this section, we select tr@mplestbinomial-tree methods to illustrate important aspects of
creating synthetic assets dynamically.

Binomial Trees

We simplify the notation significantly. We lgt= 0,1, 2,. . . denote the “time period” for the
binomial tree. We choosA so thatn = 3. The tree will consist of three periodg,= 0, 1,
and2. At eachnodethere are two possible states only. This implies thatat1 there will be
two possible states, and at= 2 there will be four altogethe.

In fact, by adjusting thé\ and selecting the number of possible states at each node as two,
three, or more, we obtain more and more complicated trees. With two possible states at every
node, the tree is called binomial; with three possible states, the tree is called trinomial. The
implied binomial tree is in Figure 7-6. Here, possible states at every node are denoted, as usual,
by up or down These terms do not mean that a variable necessarily goes up or down. They
are just shortcut names used to represent what traders may regard as “bullish” and “bearish”
movements.

The Replication Process
In this section, we lef\ = 1, for notational convenience. Consider the two binomial trees shown

in Figure 7-7 that give the joint dynamics &; and B(¢, T') over time. The top portion of the
figure represents a binomial tree that describes an investment ofj$£ at This investment,

3 In general, for nonrecombining treesjat= n, there ar@” possible states.
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Non-recombining binomial
dynamics. ..
up-up
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up-down
Initial point
down-up
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j=0 == J=1 -mmmeee s j=2

FIGURE 7-6. A Binomial Tree.

called thesavings accounis rolled over at the going spot interest rate. The bottom part of the
figure describes the price of the “long bond” over time. The initial ppiat 0 is equivalent ta,

andj = 3is equivalenttds; when thdong bondB(t,, T5) matures. The tree ionrecombining
implying that a fall in interest rates following an increase would not give the same value as an
increase that follows a drop. Thus, thath along which we get to a time node is importént.

We now consider thdynamicdmplied by these binomial trees.

5.4.1. The By, B(t, T3) Dynamics

First consider a tree for th8;, the savings account or risk-free borrowing and lending. The
practitioner starts at tim&, with one dollar. The observed interest ratgjat 0 is 10%, and
the dollar invested initially yields$.10 regardless of which state of the world is realized at time
j = 1.5 There are two possibilities @t= 1. Theupstate is an environment where interest rates
havefallenand bond prices, in general, have increased. Figure 7-7 shows a new spot rate of 8%
for the up state in periodj = 1. For thedownstate, it displays a spot rate that has increased
to 15%.

Thus, looking at the tree from the initial poit§, we can see four possible paths for the
spot rate until maturity time, of the bond under consideration. Starting from the top, the spot
interest rate paths are

{10%, 8%, 6%} (24)
{10%, 8%, 9%} (25)
{10%,15%, 12%} (26)
{10%,15%, 18%} (27)

4 See Jarrow (2002) for an excellent introductory treatment of such trees and their applications to the arbitrage-free
pricing of interest sensitive securities.

5 Hence the term, “risk-free investment.”
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Returns

Dynamics of lending/borrowing, B; (1.1) (1.08) (1.06) = $1.26

(1.1)(1.08) (1.06) = $1.26

(1.1) (1.08) (1.09) = $1.29

(1.1) (1.08) (1.09) = $1.29

$1.0

10% (1.1)(1.15) (1.12) = $1.42
(1.1) (1.15) (1.12) = $1.42
(1.1)(1.15) (1.18) = $1.49
(1.1)(1.15)(1.18) = $1.49

Time 0 e > 1 e > 2 - > 3

Dynamics of the 3-period bond price
Yy p p 100

100

100

At j=3,

bond value

is known, and is
constant at 100

100

100

100

100

100

FIGURE 7-7
These imply four possible paths for the value of the savings acdsunt

{1,1.10,1.188, 1.26}
{1,1.10,1.188,1.29}
{1,1.10,1.26, 1.42}
{1,1.10,1.26,1.49}

(28)
(29)
(30)
(1)
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Itis clear that as thé& becomes smaller, and thegets larger, the number of possible paths will
increase.

The tree for thellong” bond is shown in the bottom part of Figure 7-7. Here the value of
the bond is $100 at = 3, since the bond matures at that point. Because there is no default risk,
the maturity value of the bond is the same in any state of the world. This means that one period
beforematurity the bond will mimic a one-period risk-free investment. In fact, no matter which
one of the next two states occurs, in going from a node at jime2 to a relevant node at time
j = 3, we always invest a constant amount and recédge For example, at point, we pay

B(2,3)%" = 91.7 (32)

for the bond and receivi)0, regardless of the spot rate move. This will change, however, as
we move toward the origin. For example, at paihitwe have either a “good” return:

94.3
up —
85.0 (33)
or a “bad” return:
91.7
down __ 4
85.0 (34)

Hence, Figure 7-7 shows the dynamics of two different default-free fixed-income instruments:
the savings accour,, which can also be interpreted as a shorter maturity bond, and a three-
period long bond3(t, T3). The question is how to combine these two instruments so as to form
a synthetic medium-term bon@(t, 73).

5.4.2. Mechanics of Replication

We will now discuss the mechanics of replication. Consider Figure 7-8, which represents a
binomial tree for the price of a two-period bonB{t, 7). This tree is assumed to describe
exactly the same states of the world as the ones shown in Figure 7-7. The periods peyand

are not displayed, given that the(¢, 7>) matures then. According to this tree, we know the
value of the two-period bond only gt= 2. This value is 100, since the bond matures. Earlier
values of the bond are not known and hence are left blank. The most important unknown is, of
course, the timg = 0 value B(ty, 7). This is the “current” price of the two-period bond. The
problem we deal with in this section is how to “fill in” this tree.

The idea s to use the information given in Figure 7-7 to form a portfolio with (time-varying)
weights#ie®d and 9P°d for B, and B(t, T3). The portfolio should mimic the value of the
medium-term bond3(¢, T») atall nodes ay = 0, 1, 2. The first condition on this portfolio is
that, atT5, its value must equdl00.

The second important condition to be satisfied by the portfolio weights is thatthe, 1
adjustments do not require any cash injections or withdrawals. This means that, as the portfolio
weights are adjusted balancedany cash needed for increasing the weigltrifasset should
come from adjustment of thetherasset. This way, cash flows will consist of a payment at time
to, and areceipt of $100 at tim¥e, with no interim net payments or receipts in between—which
is exactly the cash flows of a two-period discount bond.

Then, by arbitrage arguments the value of this portfolio should track the value B{th&)
at all relevant times. This means that &' andgP°»¢ will also satisfy

glend B, 4+ gPond B(t, Ty) = B(t, Ty) (35)

for all ¢, or j.
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5.4.3. Guaranteeing Self-Financing

How can we guarantee that the adjustments of the weigfits and6;°"¢, observed along
the tree pathg = 0, 1, 2 will not lead to any cash injections or withdrawals? The following
additional conditions at = 0, 1, will be sufficient to do this:
07" By + 07" B(j +1,3)" = 031 BT, + 091" B(j +1,3)" (36)
G}CndB?_?_‘im + H?OHdB(j + 1’ 3)down _ Q;C_ir_lfB;ii\im =+ asiridB(j + 1’ 3)down (37)

Let us see what these conditions mean. On the left-hand side, the portfolio weights have the
subscriptj, while the asset prices are measured as of fimel. This means that the left-hand

side is the value of a portfoliohoserat time j, and valued at a newp or down state at time

j -+ 1. The left-hand side is, thus, a function of “new” asset prices, but “old” portfolio weights.

On the right-hand side of these equations, we have “new” portfolio wei@lj‘té,and&}?i‘;d
multiplied by the timej + 1 prices. Thus, the right-hand side represents the cost of a new
portfolio chosen at timg + 1, either in theup or downstate. Putting these two together, the
equations imply that, regardless of which state occurs, the previously chosen portfolio generates
just enough cash to put together a new replicating portfolio.

If the 67 and6}¢} are chosen so as to satisfy the equations (36) and (37), there will be
no need to inject or withdraw any cash during portfolio rebalancing. The replicating portfolio
will be self-financing This is what we mean by dynamic replication. By following these steps,
we can form a portfolio at timg = 0 and rebalance aero costntil the final cash flow 08100
is reached at timg = 2. Given that there is no credit risk, and all the final cash flows are equal,

the initial cost of the replicating portfolio must equal the value of the two-period boje-ai:
0™ By + 05°"1B(0,3) = B(0,2) (38)

Hence, dynamic replication would create a true synthetic for the two-period bond.
Finally, consider rewriting equation (37) after a slight manipulation:

(03 — O By = — (05" — 0¥ B(j + 1,3)*™" (39)
This shows that the cash obtained from adjusting one weight will be just sufficient for the cash
needed for the adjustment of the second weight. Hence, there will be no need for extra cash
injections or withdrawals. Note that this “works” even though Bie ; and B(j + 1,3)" are
random. The trees in Figure 7-7 implicitly assume that these random variablpsrégetly
correlatedwith each other.

Two Examples

We apply these ideas to two examples. In the first, we determine the current value of the two-
period default-free pure discount bond using the dynamically adjusted replicating portfolio from
Figure 7-7. The second example deals with replication of options.

5.5.1. Replicating the Bond

The top part of Figure 7-7 shows the behavior of savings accBurnthe bottom part displays

a tree for the two-period discount bo{¢, T5). Both of these trees are considered as given
exogenously, and their arbitrage-free characteristic is not questioned at this point. The objective
is to fill in the future and current values in Figure 7-8 and price the two-period Byndl’)

under these circumstances.
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EXAMPLE:

TodeterminethéB(j,2),j = 0,1, 2}, we need to begin with perigd= 2 in Figure 7-8.

This is the maturity date for the two-period bond, and there is no default possibility by
assumption. Thus, the possible values of the two-period bord=at2, denoted by
B(2,2)*, can immediately be determined:

B(Q, 2)up7up _ B(Q, Q)downfup _ B(Q, 2)upfdown _ B(Q, Q)downfdown — 100
(40)

Once these are placed at thie= 2 nodes in Figure 7-8, we take one step back and obtain
the values of B(1,2)%,i = up, down}. Here, the principles that we developed earlier
will be used. As “time” goes froni = 1 to j = 2, the value of the portfolio put together
atj = 1usingB; and B(1, 3)* should match the possible valuesi®(2, 2) at all nodes.
Consider first the top nodé3 (1, 2)"P. The following equations need to be satisfied:

ellend,upB;p—up + e?ond,upB(Z’ S)up—up _ B(Q, 2)up—up (41)
ellend,upB;p—down + ellaond,upB(Q’ 3)up—down _ SB(Q, 2)up—down (42)

Here, thed’s have;j = 1 subscript, hence the left-hand side is the value of the replicating
portfolio put together at timg = 1, but valued as of = 2. In these equations, all
variables are known except portfolio weight§"*"? and 6>°"**?, Replacing from
Figure 7-7

O V1188 + 0y MP94.3 = 100 (43)
0" VP1188 + 0y P91.7 = 100 (44)

Solving these two equations for the two unknowns, we get the replicating portfolio weights
for j = 1,7 = up. These are in units of securities, not in dollars.

0P — 84,18 (45)
oo = 0 (46)

100

100

100

FIGURE 7-8
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Thus, if the market moves te= up, 84.18 units of thé3; will be sufficient to replicate
the future values of the bond at timie= 2. In fact, this position will have thg = 2
value of

84.18(1.188) = 100 (47)

Note that the weight for the long bond is z&@he cost of the portfolio at timg = 1
can be obtained using the just calculaté@f™""?, 9°"*""}: this cost should equal
B(1,2)":

O (1.1) + 05" (85.0) = 92.6 (48)
Similarly, for the statg = 1,7 = down, we have the two equations:
ellend,downl.265 + elljond,down89'3 =100 (49)
Gllend,downl.265 + elljond,down84.7 =100 (50)
Solving, we get the relevant portfolio weights:
allcnd,down = 179.05 (51)
912)ond,down =0 (52)
We obtain the cost of the portfolio for this state:
allcnd,down(l.l) + a}fond,down(75) = 86.9 (53)

This should equal the value @(1,2)°"", Finally, we move to the initial period to
determine the valud3(0,2). The idea is again the same. At tinje= 0 choose the
portfolio weightsgied and 65°"¢ such that, as time passes, the value of the portfolio
equals the possible future valuesm®f1, 2):

0511 + 05°7985.00 = 92.6 (54)
0iend 1.1 + 95°n475.00 = 86.9 (55)

Here, the left-hand side is the value of the portfolio put together at fime) such that
its value equals those of the two-period bond at 1. Solving for the unknowns,

giend = 40.1 (56)
gpond = 0.57 (57)

Thus, at timej = 0 we need to make a deposit of 40.1 dollars and buy 0.57 units of
the three-period bond with pric& (0, 3). This will replicate the two possible values
{B(1,2)%,i = up, down}. The cost of this portfolio must equal the current fair value
of B(0, 2), if the trees for theB, and B(j, 3) are arbitrage-free. This cost is given by

B(0,2) = 40.1 4+ 0.57(72) = 81.14 (58)
This is the fair value of the two-period bondjat 0.
6 Thisisto be expected. Because the bond is similar to a risk-free investment right before the maturity, the replicating

portfolio puts a nonzero weight on th#: only. This is the case, since the three-period bond will be a risky investment.
Also, if 67°""P was nonzero, the two equations would be inconsistent.
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The arbitrage-free market value of the two-period bond is obtdigedlculating all the current

and future weightfor a dynamic self-financing portfolio that duplicates the final cash flows of a
two-period bond. At every step, the portfolio weights are adjusted so that the rebalanced portfolio
keeps matching the values 8%(5,2),j = 0, 1, 2. The fact that there were only two possible
moves from every node gave a system of two equations, in two unknowns.

Note the (important) analogy to static replication strategies. By following this dynamic
strategy and adjusting the portfolio weights, we guarantee to match the final cash flows generated
by the two-period bond, while never really making any cash injections or withdrawals. Each
time a future node is reached, the previously determined portfolio will always yield just enough
cash to do necessary adjustments.

Application to Options

We can apply the replication technique to options, and create appropriate synthetics. Thus,
consider the same risk-free lending and borrowihglynamics shown in Figure 7-7. This time,

we would like to replicate a call optio6’; written on a stockS;. The call has the following

plain vanilla properties. It expires at tim& and has a strike pric& = 100. The option is
European and cannot be exercised before the expiration date. The underlying sthmés

not pay any dividends. Finally, there are no transaction costs such as commissions and fees in
trading S; or C;.

Suppose the stock pricg follows the tree shown in Figure 7-9. Note that unlike a bond,
the stock never “matures” and future valuesSpfire always random. There is no terminal time
period where we know the future value of thg as was the case for the bond that expired at
timeT5.

However, the corresponding binomial tree for the call option still kaswnvalues at
expiration datg = 2. This is the case since, at expiration, we know the possible values that the

Stock price dynamics
160

FIGURE 7-9

7 Readers should also remember the assumption that the asset to be replicated makes no interim payouts.
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option may assume due to the formula:
02 = HlaX[Sg — 100, 0] (59)

Given the values of,, we can determine the possible value€f But, the values of the call
atearlier time periods still need to be determined.

How can this be done? The logic is essentially the same as the one utilized in the case of
two-period default-free bond. We need to determine the current value of the call option, denoted
by Cy, using a dynamically adjusted portfolio that consists of the savings account and of the
stock.S;.

EXAMPLE:
Start with the expiration period and use the boundary condition:
C% = max[Ss — 100, 0] (60)

where the subscript represents gain in the states of the wédp—up, up—down, down—
up, down—dow#. Using these, we determine the four possible valués at expiration:

C;pfup _ 60, C;lpfdown _ 42, C;iownfup _ 0, Céiown—down =0 (61)

Next, we take one step back and consider the valtie We need to replicate this with
a portfolio usingBy, S7, such that as “time” passes, the value of this portfolio stays
identical to the value of the optiafi. Thus, we need

lend,up pup—up stock,up gup—up __ ~up—up
91 BQ + 91 52 - 02 (62)
ellend,upBélp—down + eitockmpsélp—down _ C;p—down (63)

Replacing the known values from Figure 7-7 and 7-9, we have two equations and two
unknowns:

glon P (1.188) + 0517 ™R (160) = 60 (64)
elle“d’“p(l.188) n eitock,up(142) — 49 (65)
Solving for the portfolio weightg™*"> and §;"°*""?, we get
ellend,up — —84.18 (66)
getodkur _ | (67)

Thus, at timegj = 1,7 = up, we need to sell 84.18 units & and buy one stock. The
behavior of this portfolio in the immediate future will be equal to the future values of
{C4%} where i denotes the four possible stateg at 2. The cost of this portfolio i€}

O = —84.18(1.1) + 140 (68)
= 47.40 (69)

Similarly, in order to determin€'>*», we first form a replicating portfolio by solving
the equations

OY AN (1.26) + 0301 (100) = 0 (70)

ellend’down(l.26) + eitock,down (84) _ 07 (71)
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which gives
Hllend,down -0 (72)
eitock,down =0 (73)

The cost of this portfolio is zero and hence the option is worthless if we aje-=dt,
1 = down;:

e =0 (74)

Finally, the fair valueC|, of the option can be determined by finding the initial portfolio
weights from

057 (1.1) + 637 (140) = 47.40 (73)
05 (1.1) + 05°°°(80) = 0 (76)
We obtain
glend — _57.5 (77)
eatock = .79 (78)

Thus, we need to borrow 57.5 dollars and then buy .79 units of stock-af. The cost
of this will be the current value of the option:

Co = —57.5 + .79(100) (79)
=21.3 (80)

This will be the fair value of the option if the exogenously given trees are arbitrage-free.
Note again the important characteristics of this dynamic strategy.

1. To determine the current value of the option, we started from the expiration date and used
the boundary condition.

2. We keptadjusting the portfolio weights so that the replicating portfolio eventually matched
the final cash flows generated by the option.

3. Finally, there were no cash injections or cash withdrawals, so that the initial amount
invested in the strategy could be taken as the cost of the synthetic.

Some Important Conditions

In order for these methods to work, some important assumptions are needed. These are discussed
in detail here.

Arbitrage-Free Initial Conditions

The methods discussed in this chapter will work only if we start from dynamics that originally
exclude any arbitrage opportunities. Otherwise, the procedures shown will give “wrong” results.
For example, some bond pricBsj, T»)*, j = 0, 1 orthe option price may turn out to begative.

There are many ways the arbitrage-free nature of the original dynamics can be discussed.
One obvious condition concerns the returns associated with the savings account and the other
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constituent asset. It is clear that, at all nodes of the binomial trees in Figure 7-7, the following
condition needs to be satisfied:

R{™™ < L; < RJP (81)

whereL; is the one-period spot rate that is observed at that node aniithe and k" are
two possible returns associated with the bond at the same node.
According to this condition, the risk-free rate should be between the two possible returns that
one can obtain from holding the “risky” asséi(¢, T"). For the case of bonds, before expiration
we must also have, due to arbitrage,

R{™™ = L; = R}® (82)

Otherwise, we could buy or sell the bond, and use the proceeds in the risk-free investment to
make unlimited gains.

Yet, the arbitrage-free characteristic of binomial trees normally require more than this simple
condition. As Chapter 11 will show, the underlying dynamics should be conformable with proper
Martingaledynamics in order to make the trees arbitrage-free.

Role of Binomial Structure

There is also a very strong assumption behind the binomial tree structure that was used during
the discussion. This assumption does not change the logic of the dynamic replication strategy,
but can make it numerically more complicated if it is not satisfied.

Consider Figure 7-7. In these trees, it was assumed that when the short rate dropped, the
long rate always dropped along with it. Conversely, when the short rate increased, the long rate
increased with it. That is to say, the long bond return and the short rateoedeetlycorrelated.

It is thanks to this assumption that we were able to associate a future valtjensth another
future value ofB(¢, Ts). These “associations” were never random. A similar assumption was
made concerning the binomial trees f&y and C;. The movements of these two assets were
perfectly correlated.

This is a rather strong assumption, and is due to the fact that we are using the so-called
one-factomodel. It is assumed that there is a single random variable that determines the future
value of the assets under consideration at every node. In reality, given a possible movement in
the short rate;, we may not know whether a bond prié&t, T") will go up or down in the
immediate future, sincetherrandom factors may be at play. Under such conditions, it would be
impossible to obtain the same equations, sincether down values of the two assets would
not be associated with certainty.

Yet, introducing further random factors will only increase the numerical complexity of the
tree models. We can, for example, move from binomial to trinomial or more complicated trees.
The general logic of the dynamic replication does not change. However, we may need further
base assets to form a proper synthetic.

Real-Life Complications

Real-life complications make dynamic replication a much more fragile exercise than static

replication. The problems that are encountered in static replication are well known. There are
operational problems, counterparty risk, and the theoretically exact synthetics may not be iden-
tical to the original asset. There are also liquidity problems and other transactions costs. But, all
these are relatively minor and in the end, static replicating portfolios used in practice generally
provide good synthetics.
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With dynamic replication, these problems are magnified because the underlying positions
need to be readjusted many times. For example, the effect of transaction costs is much more
serious if dynamic adjustments are required frequently. Similarly, the implications of liquidity
problems will also be more serious. But more important, the real-life use of dynamic replication
methods brings forthhewproblems that would not exist with static synthetics. We study these
briefly.

Bid-Ask Spreads and Liquidity

Consider the simple case of bid-ask spreads. In static replication, the portfolio that constitutes the
synthetic is put together at tinti@nd is never altered until expiratidn In such an environment,

the existence of bid-ask spreads may be nonnegligible, but this is hardly a major aspect of the
problem. After all, any bid-ask spread will end up increasing (or lowering) the cost of the
associated synthetic, and in the unlikely case that these are prohibitive, then the synthetic will
not be put together.

Yet, with dynamic replication, the practitioner is constantly adjusting the replicating port-
folio. Such a process is much more vulnerable to widening bid-ask spreads or the underlying
liquidity changes. At the time dynamic replication is initiated, the future movements of bid-ask
spreads or of liquidity will not be known exactly and cannot be factored into the initial cost of
the synthetic. Such movements will constitute additional risks, and increase the costs even when
the synthetic is held until maturity.

Models and Jumps

Dynamic replication is never perfect in real life. It is done usingdelsin discrete time. But
models imply assumptions and discrete time means approximation. This leads to a model risk.
Many factors and the possibility of having jumps in the underlying risks may have serious
consequences if not taken into account properly during the dynamic replication process.

Maintenance and Operational Costs

It is easy to obtain a dynamic replication strategy theoretically. But in practice, this strat-
egy needs to be implemented using appropriate position-keeping and risk-management tools.
The necessary software and human skills required for these tasks may lead to significant
new costs.

Changes in Volatility

Often, dynamic replication is needed because the underlying instruments are nonlinear. It
turns out that, in dealing with nonlinear instruments, we will have additional exposures to
new and less transparent risks such as movements wolhaélity of the associated risk fac-
tors. Because risk-managing volatility exposures is much more delicate (and difficult) than
the management of interest rate or exchange rate risks, dynamic replication often requires
additional skills.

In the exercises at the end of this chapter we briefly come back to this point and provide
a reading (and some questions) concerning the role of volatility changes during the dynamic
hedging process.
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8. Conclusions

We finish the chapter with an important observation. Static replication was best done using cash
flow diagrams and resulted in contractual equations wdifistantwveights.

Creating synthetics dynamically requires constant adjustments and careful selection of port-
folio weightsé?, in order to make the synthetself-financingThus, we again use contractual
equations, butthis time, the weights placed on each contract changes as time passes. This requires
the use of algebraic equations and is done with computers.

Finally, thedynamicsynthetic is nothing but the sequence of weigfits, 63, . . . |0}
that the financial engineer will determine at time

Suggested Reading

Several books deal with dynamic replication. Often these are intermediate-level textbooks on
derivatives and financial markets. We have two preferred sources that the reader can consult for
further examples. The first Iarrow (2002). This book deals with fixed-income examples only.
The second idarrow and Turnbull (1999), where dynamic replication methods are discussed

in much more detail with a broad range of applications. The reader can also consult the original
Cox and Ross (19764a) article. It remains a very good summary of the procedure.
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Exercises

1. Suppose you are given the following data:

e The risk-free interest rate is 6%.
e The stock price follows:

dSt = /JStdt + O'Stth (83)

e \Dlatility is 12% a year.
e The stock pays no dividends and the current stock price is 100.

Using these data, you are asked to approximate the current value of a European call option
on the stock. The option has a strike price of 100 and a maturity of 200 days.

(a) Determine an appropriate time interval such that an implied binomial tree
has five steps.

(b) What is the impliedup probability?

(c) Determine the tree for the stock priSg

(d) Determine the tree for the call premiumj.

2. Suppose the stock discussed in Exercise 1 pays dividends. Assume all parameters are the
same. Consider three forms of dividends paid by the firm:

(a) The stock pays a continuous, known stream of dividends at a rate of 4% per
time.

(b) The stock pays 5% of the value of the stock at the third node. No other
dividends are paid.

(c) The stock pays a $5 dividend at the third node.

In each case, determine the tree for the ex-dividend stock price. For the first two cases,
determine the premium of the call. In what way(s) does the third type of dividend payment
complicate the binomial tree?

3. You are going to use binomial trees to value American-style options on the British pound.
Assume that the British pound is currently worth $1.40. Volatility is 10%. The current
British risk-free rate is 5%, and the U.S. risk-free rate is 2%. The put option has a strike
price of $1.50. It expires in 200 days. American style options can be exercised before
expiration.

(a) Thefirstissue to be settled is the role of U.S. and British interest rates. This
option is being purchased in the United States, so the relevant risk-free rate is
2%. But British pounds can be used to earn British risk-free rates. So this
variable can be treated as a continuous rate of dividends.

Taking this into account, determinedasuch that the binomial tree has five
periods.

(b) Determine the relevant probabilities.

(c) Determine the tree for the exchange rate.

(d) Determine the tree for a European put with the same characteristics.

(e) Determine the price of an American style put with these properties.
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4. Consider the reading that follows, which deals with the effects of straightfordedtal
hedging Read the events described and then answer the questions that follow.

Dynamic Hedging

U.S. equity option market participants were of one voice last week in refuting
the notion that [dynamic hedging due to] equity options trading had exacer-

bated the stock market correction of late October, which saw the Dow Jones
Industrial Average fall 554.26 points, or some 7%.

Dynamic hedging is a strategy in which investors buy and sell stocks to create a
payout, which is the same as going long and short options. Thus, if the market
takes a big drop, a writer of puts sells stock to cut their losses. Dynamic hedgers
buy and sell stock to achieve the position they desire to equalize their exposure
to volatility.

The purpose of dynamic hedging, also known as delta hedging, is to remain
market-neutral. The hedger’s objective is to have no directional exposure to
the market. For example, the hedgers will buy puts, giving them the right to sell
stock. They are thus essentially short the market. To offset this short position,
the hedger will purchase the underlying stock. The investor is now long the
put and long the stock, and thereby market-neutral.

If the market falls, the investor's put goes in-the-money, increasing the short
exposure to the market. To offset this, the investor will sell the underlying.

“It is my humble opinion that few investors use dynamic hedging. If somebody
is selling options, i.e. selling volatility, they will have an offsetting position
where they are long volatility. People don'’t take big one-sided bets,” said a
senior official at another U.S. derivatives exchange. (IFR, issue 832)

(@) Suppose there are a lot of put writers. How would these traders hedge their
position? Show using appropriate payoff diagrams.

(b) What would these traders do when markets start falling? Show on payoff
diagrams.

(c) Now suppose an option’s trader is short volatility as the last paragraph implies.
Describe how this trader can be long volatility “somewhere else.”

(d) Isit possible that the overall market is a bit short volatility, yet that this amount
is still very substantial for the underlying (cash) markets?

There are many special terms in this reading, but at this point we would like to
emphasize one important aspect of dynamic hedging that was left unmentioned in the
chapter. As mentioned in the reading, in order to dynamically hedge a nonlinear asset, we
need aelta Delta is the sensitiveness of the option to underlying price changes. Now if
this asset is indeed nonlinear, then the delta will depend on the volatility of underlying
risks. If this volatility is itself dependent on many factors, such as the strike price, then
there will be avolatility smileand delta-hedging may be inaccurate.

To this effect, suppose you have a long options’ position on FTSE-100. How would
you delta-hedge this position? More important, how would this delta hedge be affected
by the observations in the last paragraph of the reading?

5. Determine whether the trees in Figure 7-7 are arbitrage-free or not.



